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Significance and Unmet Needs 

Artificial intelligence plays an important role and has great potential in the modern development 

of effective systems for autonomously operated spacecrafts and surface rovers. One of the 

significant challenges while operating in space is that large amounts of relevant data may not be 

readily available for algorithms to train models to enhance autonomy. Due to potentially high 

consumption of computing resources, artificial intelligence models will have to be trained on Earth 

using distributed computing resources with analogous source data and transformed to the various 

physical conditions and environments of the targeted extraterrestrial location.  

Another feasible challenge in human space flight is disaster management and handling risks related 

to unknown conditions and events in space. Very little data may be available to identify and predict 

potential threats and disasters. Standard machine learning approach may not produce accurate 

results when large volume of relevant data is not readily available on-board of a spacecraft. 

Consider following scenario, an autonomously operated rover moves on the surface with no 

atmosphere with initial speed of one foot per second. What would be the effect of natural forces, 

including atmosphere and gravity on operation of the rover? The solution may be found in 

instantiating and solving the relevant equations and applying transfer learning based upon 

physical insights.   

Innovation 

DDT’s innovative QI-Space AI system Physics-Based Transfer Learning combines our state-of-

the-art physics-based modeling with Physics-Informed Deep Learning technologies functioning 

within the entire domain as well as specific and individual subdomains of the system, Figure 1. 

 

Figure 1. Quantum Intelligence (QI-Space AI System) diagram 

QI-Space AI System is powered by individual case-based transfer learning AI models that transfer 

continuously obtained knowledge from individual units (e.g. surface rovers, autonomous 

exploration equipment) back to the specific domain system (e.g. Mars station) that feeds the 

generic model developed on Earth. On the other hand, the continuously updated generic domain 

model will transfer knowledge obtained from other specific and individual domains. QI-Space AI 

System aims to transfer knowledge obtained by various domains and subdomains of the system as 

well as solve lack of computing capabilities by individual units. 



DDT’s solution leverages the governing partial differential equations (PDE) for the physics-based 

models to produce an informed deep learning neural network with realistic and relevant data.  

DDT’s Virtual experimental Simulation environment (VxSIM) is capable to accurately represent 

the multi-domain environmental states which influences amphibious vehicle motions and  

developed to address Navy’s needs for autonomous system development and verification, Figure 

2.VxSIM utilizes various sensor models (i.e. EO, 

IR, RF, Lidar, MMWR, etc.), and permits easy 

integration with new sensor models. The 

simulation environment provides a rich source of 

data for training the AI and autonomous systems. 

Our innovative framework is fully parameterized 

such that gravity, material properties, 

atmospherics, environment, terrain, ephemeris, 

etc., can be configured to represent any intended 

deployable environment.  

To realize the benefits of QI-Space AI System, 

DDT would collaborate with our NASA partners to 

define a use case such as an autonomously operated 

rover operating on Mars.  Then based on NASA 

supplied data, we would: 

1. Build the physics models for the systems and 

the intended environment.  

2. Develop a methodology for PDE transition 

and representation in the Physics-Informed 

Deep Learning framework.  

3. Conduct a study with NASA provided data 

driving the simulation, to demonstrate the 

prototype QI-Space AI System and feasibility 

of successfully transferring the model across 

domains and environments. 

Approach 

As we know humans frequently learn by leveraging different experiences and knowledge gained 

in the past to improve upon new, novel tasks. Transfer learning is similar in nature as it allows to 

apply knowledge learned from one source to solve novel problems in another source. Methods for 

transfer learning hold the promise of being exceedingly useful, because it could dramatically 

decrease the amount of training required by successfully employing knowledge obtained from 

different, but related, problems. A transfer learning evaluation compares performance measures 

such as learning rate, initial advantage and asymptotic advantage.  Initial advantage (or jump start) 

is the initial increase in an agent’s performance resulting from transfer. Learning rate is a decrease 

in the time required to reach a particular performance level, particularly asymptotic performance. 

(Klenk, M., Aha, D. W., & Molineaux, M., 2011). Due to its ability to extract insights from existing 

experimental and simulation data, transfer learning is a promising tool for scientists who face 

unknown factors and other challenges. 

Figure 2: DDT’s Virtual experimental 

Simulation (VxSIM), a physics-based 

modeling, simulation and analysis 

environment designed for advancing, 

training and testing AI and Autonomy 

systems.  Supports sensor modeling, 

deformalble terrain soil/regolith, parameter 

driven, multi-physics and ROS interface. 



Case-based reasoning (CBR) is a problem-solving process in which inferences about a situation 

are drawn from individual cases. While the roots of CBR lie in observations of human reasoning 

(Schank 1982; Kolodner 1993), this discipline is now aligned closely with computer science. This 

can be applied to a transfer learning methodology when previously learned knowledge from 

individual cases transfers to new scenarios. For example, the learned and transferred knowledge 

could be the case base after training on source problems. During learning on target problems, the 

same CBR cycle can be used to solve problems in the target, updating the same case base. Thus, 

the CBR system is unaware that it is being evaluated for transfer learning and makes no distinction 

between source and target cases. For these systems, transfer distance and initial advantage provide 

a useful metric for evaluating the retrieval and reuse mechanisms of the CBR system. (Klenk, M., 

Aha, D. W., & Molineaux, M., 2011).  

 

Figure 3. Case-based Transfer Learning diagram 

Physics based problem solving requires reasoning over a wide range of entities and scenarios.  

Traditional Machine learning, case-based reasoning and AI approaches may not work well on 

limited data with generic descriptors, but it may produce better results by using insights from 

physical equations. This is a novel approach for solving the problem by transferring physical 

insights into more generic descriptors, such as invariant risk minimization where we learn causal 

factors from data. The causal factors have the properties that stay invariant even when the 

environment changes and they transfer well. In this approach, we learn invariances across 

environments by finding a data representation such that the model on top of that representation 

performs equally well for all environments, in this case in the target environment. Unlike 

traditional applications, this approach allows to screen conditions which have not necessarily 

been tested before with minimum amounts of available data combined with high details of 

physical understanding.  

Commercialization  

DDT’s commercialization team has developed a lean transition process that works quickly and 

more affordably for our clients.  We focus on nine key business drivers to ensure success and use 

a Build-Measure-Learn loop that minimizes funding needed to get a prototype to the next gate.  



The nine key business drivers are: Customer Segments, Value Propositions, Channels, Revenue 

Streams, Key Activities, Key Resources, Key Partnerships, Customer Relationships and Cost 

Structures.  It is a phased process where each step must be completed and gated to move on to the 

next step.  The phased technology transition process includes: 1) a review and prioritization of the 

pipeline of opportunities; 2) a developed project description, documentation, and a communication 

plan to ensure all interested parties know their responsibilities; 3) initial documentation of the 

intellectual property (both government owned and Team DDT owned), initial business model 

development plan, staffing plan, development of initial hypotheses; 4) review/approve hypotheses 

and plans; 5) iteratively validating hypotheses through lean startup principles; 6) document 

validated business model, value proposition, projections, recommended path forward, and business 

proposal; 7) establish and review business proposal; 8) develop business plan to scale product, 

obtain financing, execute plan.   

We start with a minimum viable product (MVP), providing users/clients with real but imperfect 

utility early in the product evolution to stimulate feedback.  Cycling through changes, where 

coherent bundles of features advance the product toward the ideal, our process advanced to 

converge with the customer’s needs.  Throughout, the focus is on interaction with current and 

potential customers, to gain first hand insight into their needs, operating context, and business to 

prove or challenge our assumptions and hypotheses about our product and refine to meet reality in 

the marketplace.  

We anticipate our initial customers to include NASA’s Artemis Program, Gateway and mission to 

Mars, along with commercial offshore oil and gas industry, deep ocean and artic exploration, and 

the DoD.  All of these organizations have applications for AI’s deployed to environments that can 

best be replicated with digital simulation.  Therefore, our innovative physics-based transfer 

learning technology not only would significantly reduce the risks associated with the AI 

employment but also provide opportunities to deploy AI in environments that was never possible 

before or very costly.  

Market Size:  Since the market for physics-based transfer learning is nascent, we extrapolate from 

the deep learning market.  According to Markets and Markets research, deep learning was worth 

USD 2.28 Billion in 2017 and is expected to reach USD 18.16 Billion by 2023, at a CAGR of 

41.7% from 2018 to 2023.  We conservatively estimate capturing approximately 0.058% market 

share of the year 2023 market size, which brings our pro forma revenue forecast for product and 

services to approximately $10.5M in 2030.    

Go-to-Market Strategy. DDT implements a multi-pronged approach which includes direct 

marketing and displays at selected technology conferences and organizational memberships.  We 

intend to work with NASA to determine SBIR path for prototype funding and technology 

demonstrations.  Then leverage our extensive connections within DoD, industry partners, affiliates, 

and the Maryland Tech Council ecosystem to discover opportunities for new applications.  

Team DDT  

Mr. Karl Leodler, Founder and CEO of DDT  

A seasoned professional with over 30 years of experience developing physics-based software 

simulations and over 14 years applying simulation technologies to advance, train and test AI and 

autonomy systems.  As Principal Investigator on over 14 SBIR/STTR awards, Mr. Leodler 

demonstrates a passion for research and a refined skill for transforming R&D to commercial 



applications.  Prior to founding DDT in 2015, Mr. Leodler served as President of JRM 

Technologies for 2 years and Modeling and Simulation Department Manager for General 

Dynamics Robotic Systems for 6 years.  

Dr. Pooyan Jamshidi, University of South Carolina  

Dr. Jamshidi is an Assistant Professor at the University of South Carolina and Director of the 

AISys Lab, where he investigates the development of novel algorithmic and theoretically 

principled methods for machine learning systems.  Prior to his current position, he was a research 

associate at Carnegie Mellon University and Imperial College London, where he primarily worked 

on transfer learning for performance understanding of highly-configurable systems including 

robotics and big data systems. Dr. Jamshidi’s general research interests are at the intersection of 

systems/software and machine learning. He received his Ph.D. in Computer Science at Dublin City 

University in 2014, and M.S. and B.S. degrees in Computer Science and Math from the Amirkabir 

University of Technology in 2003 and 2006 respectively.  Current research projects include “A 

Generic Data-Driven Framework via Physics-Informed DeepLearning” and “Robust Software 

Testing of Autonomous Aerospace Robotic Systems Using Transfer Learning” with NASA, and 

“Online Transfer Learning and Self-Adaptation of Robots” with DARPA.  

Dr. Saman Nezami, Sr. Research Scientist, DDT  

Dr. Nezami has over 14 years of engineering model development and analysis experience.  His 

technical skills include physics-based structural, multibody dynamics and vibration analysis, 

design optimization and energy harvesting.  Prior to joining DDT, as a PhD candidate, he worked 

for the UMBC ME Department as a Graduate Research Assistant where he conducted research on 

energy harvesting for conditional sensors from vibration available in their surrounding 

environment, investigated durability of the vibrational energy harvesters’ structure under dynamic 

and random impulses to improve their structure and extend operational life, conducted geometrical 

optimization of structural elements of vibrational energy harvesters using Shape Optimization and 

Topology Optimization techniques and lead the experimental test team in multiple researches 

topics.  Dr. Nezami earned his PhD in Mechanical Engineering, from UMBC.  

Ms. Olga Perera, Sr. Data Scientist, DDT  

Ms. Olga Perera is a Senior Data Scientist with background in natural language processing, data 

engineering, and cloud computing. Ms. Perera is currently pursuing her PhD in Information 

Systems from Dakota State University. She completed her MS in Applied Data Science from 

Syracuse University and received the iSchool Applied Data Science Award that recognizes one 

student in each graduate program who exemplifies excellence in graduate study, through class 

projects, research, and other forms of scholarship. Ms. Perera has worked on NASA data 

integration project. Presented at AIAA (American Institute of Aeronautics and Astronautics) 2019 

Technical Symposium on Natural Language Processing Techniques and its Application in Space 

Exploration. She has working knowledge of AWS platform and serverless architecture, Data Lake 

architecture, AWS managed services, Search applications.   
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